Extended Newton’s Method for Mappings on Riemannian Manifolds with Values in a Cone

نویسندگان

  • Jin-Hua Wang
  • Shuechin Huang
  • Chong Li
چکیده

Robinson’s generalized Newton’s method for nonlinear functions with values in a cone is extended to mappings on Riemannian manifolds with values in a cone. When Df satisfies the L-average Lipschitz condition, we use the majorizing function technique to establish the semi-local quadratic convergence of the sequences generated by the extended Newton’s method. As applications, we also obtain Kantorovich’s type theorem, Smale’s type theorem under the γ-condition and an extension of the theory of Smale’s approximate zeros.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Geometry Preserving Kernel over Riemannian Manifolds

Abstract- Kernel trick and projection to tangent spaces are two choices for linearizing the data points lying on Riemannian manifolds. These approaches are used to provide the prerequisites for applying standard machine learning methods on Riemannian manifolds. Classical kernels implicitly project data to high dimensional feature space without considering the intrinsic geometry of data points. ...

متن کامل

Newton ’ s method on Riemannian manifolds : Smale ’ s point estimate theory under the γ - condition

Newton’s method and its variants are among the most efficient methods known for solving systems of non-linear equations when the functions involved are continuously differentiable. Besides its practical applications, Newton’s method is also a powerful theoretical tool. Therefore, it has been studied and used extensively. One of the famous results on Newton’s method is the well-known Kantorovich...

متن کامل

ACTION OF SEMISIMPLE ISOMERY GROUPS ON SOME RIEMANNIAN MANIFOLDS OF NONPOSITIVE CURVATURE

A manifold with a smooth action of a Lie group G is called G-manifold. In this paper we consider a complete Riemannian manifold M with the action of a closed and connected Lie subgroup G of the isometries. The dimension of the orbit space is called the cohomogeneity of the action. Manifolds having actions of cohomogeneity zero are called homogeneous. A classic theorem about Riemannian manifolds...

متن کامل

Newton Method on Riemannian Manifolds: Covariant Alpha-Theory

Nf (z) = expz(−Df(z)f(z)) where expz : TzMn → Mn denotes the exponential map. When, instead of a mapping we consider a vector field X, in order to define Newton method, we resort to an object studied in differential geometry; namely, the covariant derivative of vector fields denoted here by DX. We let NX(z) = expz(−DX(z)X(z)). These definitions coincide with the usual one when Mn = Rn because e...

متن کامل

Optimization Techniques on Riemannian Manifolds

The techniques and analysis presented in this paper provide new methods to solve optimization problems posed on Riemannian manifolds. A new point of view is offered for the solution of constrained optimization problems. Some classical optimization techniques on Euclidean space are generalized to Riemannian manifolds. Several algorithms are presented and their convergence properties are analyzed...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009