Extended Newton’s Method for Mappings on Riemannian Manifolds with Values in a Cone
نویسندگان
چکیده
Robinson’s generalized Newton’s method for nonlinear functions with values in a cone is extended to mappings on Riemannian manifolds with values in a cone. When Df satisfies the L-average Lipschitz condition, we use the majorizing function technique to establish the semi-local quadratic convergence of the sequences generated by the extended Newton’s method. As applications, we also obtain Kantorovich’s type theorem, Smale’s type theorem under the γ-condition and an extension of the theory of Smale’s approximate zeros.
منابع مشابه
A Geometry Preserving Kernel over Riemannian Manifolds
Abstract- Kernel trick and projection to tangent spaces are two choices for linearizing the data points lying on Riemannian manifolds. These approaches are used to provide the prerequisites for applying standard machine learning methods on Riemannian manifolds. Classical kernels implicitly project data to high dimensional feature space without considering the intrinsic geometry of data points. ...
متن کاملNewton ’ s method on Riemannian manifolds : Smale ’ s point estimate theory under the γ - condition
Newton’s method and its variants are among the most efficient methods known for solving systems of non-linear equations when the functions involved are continuously differentiable. Besides its practical applications, Newton’s method is also a powerful theoretical tool. Therefore, it has been studied and used extensively. One of the famous results on Newton’s method is the well-known Kantorovich...
متن کاملACTION OF SEMISIMPLE ISOMERY GROUPS ON SOME RIEMANNIAN MANIFOLDS OF NONPOSITIVE CURVATURE
A manifold with a smooth action of a Lie group G is called G-manifold. In this paper we consider a complete Riemannian manifold M with the action of a closed and connected Lie subgroup G of the isometries. The dimension of the orbit space is called the cohomogeneity of the action. Manifolds having actions of cohomogeneity zero are called homogeneous. A classic theorem about Riemannian manifolds...
متن کاملNewton Method on Riemannian Manifolds: Covariant Alpha-Theory
Nf (z) = expz(−Df(z)f(z)) where expz : TzMn → Mn denotes the exponential map. When, instead of a mapping we consider a vector field X, in order to define Newton method, we resort to an object studied in differential geometry; namely, the covariant derivative of vector fields denoted here by DX. We let NX(z) = expz(−DX(z)X(z)). These definitions coincide with the usual one when Mn = Rn because e...
متن کاملOptimization Techniques on Riemannian Manifolds
The techniques and analysis presented in this paper provide new methods to solve optimization problems posed on Riemannian manifolds. A new point of view is offered for the solution of constrained optimization problems. Some classical optimization techniques on Euclidean space are generalized to Riemannian manifolds. Several algorithms are presented and their convergence properties are analyzed...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009